Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.13.472454

ABSTRACT

Motivation: Building reliable phylogenies from very large collections of sequences with a limited number of phylogenetically informative sites is challenging because sequencing errors and recurrent/backward mutations interfere with the phylogenetic signal, confounding true evolutionary relationships. Massive global efforts of sequencing genomes and reconstructing the phylogeny of SARS-CoV-2 strains exemplify these difficulties since there are only hundreds of phylogenetically informative sites and millions of genomes. For such datasets, we set out to develop a method for building the phylogenetic tree of genomic haplotypes consisting of positions harboring common variants to improve the signal-to-noise ratio for more accurate phylogenetic inference of resolvable phylogenetic features. Results: We present the TopHap approach that determines spatiotemporally common haplotypes of common variants and builds their phylogeny at a fraction of the computational time of traditional methods. To assess topological robustness, we develop a bootstrap resampling strategy that resamples genomes spatiotemporally. The application of TopHap to build a phylogeny of 68,057 genomes (68KG) produced an evolutionary tree of major SARS-CoV-2 haplotypes. This phylogeny is concordant with the mutation tree inferred using the co-occurrence pattern of mutations and recovers key phylogenetic relationships from more traditional analyses. We also evaluated alternative roots of the SARS-CoV-2 phylogeny and found that the earliest sampled genomes in 2019 likely evolved by four mutations of the most recent common ancestor of all SARS-CoV-2 genomes. An application of TopHap to more than 1 million genomes reconstructed the most comprehensive evolutionary relationships of major variants, which confirmed the 68KG phylogeny and provided evolutionary origins of major variants of concern. Availability: TopHap is available on the web at https://github.com/SayakaMiura/TopHap.

2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.24.311845

ABSTRACT

We report the likely most recent common ancestor of SARS-CoV-2 - the coronavirus that causes COVID-19. This progenitor SARS-CoV-2 genome was recovered through a novel application and advancement of computational methods initially developed to reconstruct the mutational history of tumor cells in a patient. The progenitor differs from the earliest coronaviruses sampled in China by three variants, implying that none of the earliest patients represent the index case or gave rise to all the human infections. However, multiple coronavirus infections in China and the USA harbored the progenitor genetic fingerprint in January 2020 and later, suggesting that the progenitor was spreading worldwide as soon as weeks after the first reported cases of COVID-19. Mutations of the progenitor and its offshoots have produced many dominant coronavirus strains, which have spread episodically over time. Fingerprinting based on common mutations reveals that the same coronavirus lineage has dominated North America for most of the pandemic. There have been multiple replacements of predominant coronavirus strains in Europe and Asia and the continued presence of multiple high-frequency strains in Asia and North America. We provide a continually updating dashboard of global evolution and spatiotemporal trends of SARS-CoV-2 spread (http://sars2evo.datamonkey.org/).


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL